Extended Irreducible Binary Sextic Goppa Codes
نویسندگان
چکیده
Let $n (>3)$ be a prime number and notation="LaTeX">${\mathbb {F}}_{2^{n}}$ finite field of notation="LaTeX">$2^{n}$ elements. notation="LaTeX">$L ={\mathbb {F}}_{2^{n}}\cup \{\infty \}$ the support set notation="LaTeX">$g(x)$ an irreducible polynomial degree 6 over . In this paper, we obtain upper bound on extended binary Goppa codes notation="LaTeX">$\Gamma (L, g)$ length notation="LaTeX">$2^{n}+1$
منابع مشابه
Counting Extended Irreducible Goppa Codes
We obtain an upper bound on the number of extended irreducible q-ary Goppa codes of degree r and length q + 1, where q = p and n and r > 2 are prime numbers.
متن کاملInteresting Examples on Maximal Irreducible Goppa Codes
In this paper a full categorization of irreducible classical Goppa codes of degree 4 and length 9 is given. It is an interesting example in the context of find the number of permutation non-equivalent classical irreducible maximal Goppa codes having fixed parameters q, n and r using group theory techniques.
متن کاملEnumeration of inequivalent irreducible Goppa codes
We consider irreducible Goppa codes over Fq of length q n defined by polynomials of degree r where q is a prime power and n, r are arbitrary positive integers. We obtain an upper bound on the number of such codes.
متن کاملPermutation equivalent maximal irreducible Goppa codes
We consider the problem of finding the number of permutation nonequivalent classical irreducible maximal Goppa codes having fixed parameters q, n and r from a group theory point of view.
متن کاملCodes Derived from Binary Goppa Codes
We present a new family of binary codes derived from the family of classical Goppa codes. We generalize properties of Goppa codes to this family and deduce bounds on the dimension and on the minimum distance, and the existence of a polynomial-time decoding algorithm up to a constructed error-correcting capability. Asymptotically these codes have the same parameters as Goppa codes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2022
ISSN: ['0018-9448', '1557-9654']
DOI: https://doi.org/10.1109/tit.2021.3116659