Extended Stochastic Gradient Identification Method for Hammerstein Model Based on Approximate Least Absolute Deviation
نویسندگان
چکیده
منابع مشابه
Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems
An extended stochastic gradient algorithm is developed to estimate the parameters of Hammerstein–Wiener ARMAX models. The basic idea is to replace the unmeasurable noise terms in the information vector of the pseudo-linear regression identification model with the corresponding noise estimates which are computed by the obtained parameter estimates. The obtained parameter estimates of the identif...
متن کاملOn Least Absolute Deviation Estimators For One Dimensional Chirp Model
It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that th...
متن کاملA Recursive Method of Identification of Hammerstein Model Based on Least Squares Support Vector Machines
In the domain of industrial process modeling and control, Hammerstein model has been used widely to describe a class of nonlinear systems. Goethals et al. (2005) proposed a method based on Least Squares Support Vector Machines (LSSVM) to identify the input-output relationship of the Hammerstein model. Unfortunately, as the data points grow, this kernel learning approach costs much time correspo...
متن کاملAnalysis of least absolute deviation
The least absolute deviation or L1 method is a widely known alternative to the classical least squares or L2 method for statistical analysis of linear regression models. Instead of minimizing the sum of squared errors, it minimizes the sum of absolute values of errors. Despite its long history and many ground-breaking works (cf. Portnoy and Koenker (1997) and references therein), the former has...
متن کاملSystem Identification Using Reweighted Zero Attracting Least Absolute Deviation Algorithm
In this paper, the l1 norm penalty on the filter coefficients is incorporated in the least mean absolute deviation (LAD) algorithm to improve the performance of the LAD algorithm. The performance of LAD, zero-attracting LAD (ZA-LAD) and reweighted zero-attracting LAD (RZA-LAD) are evaluated for linear time varying system identification under the non-Gaussian (α-stable) noise environments. Effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2016
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2016/9548428