Extensions of Hiai-Lin type eigenvalue inequality

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new extensions of Hardy`s inequality

In this study, by a non-negative homogeneous kernel k we prove some extensions of Hardy's inequalityin two and three dimensions

متن کامل

Extensions of Hardy Inequality

for every u∈W1,p(Rn). It is easy to see that the proposition fails when s > 1, where s = q/p. In this paper we are trying to find out what happens if s > 1. We show that it does not only become true but obtains better estimates. The described result is stated and proved in Section 3. The method invoked is different from that by Cazenave in [2]; it relies on some Littlewood-Paley theory and Beso...

متن کامل

On some nonlinear extensions of the Gagliardo-Nirenberg inequality with applications to nonlinear eigenvalue problems

We derive inequality ∫ R |f ′(x)|ph(f(x))dx ≤ (√ p− 1 )p ∫ R (√ |f ′′(x)Th(f(x))| )p h(f(x))dx, where f belongs locally to Sobolev space W 2,1 and f ′ has bounded support. Here h(·) is a given function and Th(·) is its given transform, it is independent of p. In case when h ≡ 1 we retrieve the well known inequality: ∫ R |f ′(x)|pdx ≤ (√ p− 1 )p ∫ R (√ |f (x)f(x)| )p dx. Our inequalities have fo...

متن کامل

Operator Extensions of Hua’s Inequality

Abstract. We give an extension of Hua’s inequality in pre-Hilbert C∗-modules without using convexity or the classical Hua’s inequality. As a consequence, some known and new generalizations of this inequality are deduced. Providing a Jensen inequality in the content of Hilbert C∗-modules, another extension of Hua’s inequality is obtained. We also present an operator Hua’s inequality, which is eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2019

ISSN: 1846-3886

DOI: 10.7153/oam-2019-13-13