EXTERIOR DIFFERENTIAL FORMS ON RIEMANNIAN SYMMETRIC SPACES
نویسندگان
چکیده
منابع مشابه
LOGARITHMIC DIFFERENTIAL FORMS ON p-ADIC SYMMETRIC SPACES
We give an explicit description in terms of logarithmic differential forms of the isomorphism of P. Schneider and U. Stuhler relating de Rham cohomology of p-adic symmetric spaces to boundary distributions. As an application we prove a Hodgetype decomposition for the de Rham cohomology of varieties over p-adic fields which admit a uniformization by a p-adic symmetric space.
متن کاملDirichlet forms on symmetric spaces
© Annales de l’institut Fourier, 1973, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichie...
متن کاملSymmetric Submanifolds of Riemannian Symmetric Spaces
A symmetric space is a Riemannian manifold that is “symmetric” about each of its points: for each p ∈M there is an isometry σp of M such that (σp)∗ = −I on TpM . Symmetric spaces and their local versions were studied and classified by E.Cartan in the 1920’s. In 1980 D.Ferus [F2] introduced the concept of symmetric submanifolds of Euclidean space: A submanifold M of R is a symmetric submanifold ...
متن کاملExterior Powers of Symmetric Bilinear Forms
We study exterior powers of classes of symmetric bilinear forms in the WittGrothendieck ring of a field of characteristic not equal to 2, and derive their basic properties. The exterior powers are used to obtain annihilating polynomials for quadratic forms in the Witt ring. 1991 AMS Subject Classification: 11E04, 11E81
متن کاملDifferential Forms on Noncommutative Spaces
This paper is intended as an introduction to noncommutative geometry for readers with some knowledge of abstract algebra and differential geometry. We show how to extend the theory of differential forms to the “noncommutative spaces” studied in noncommutative geometry. We formulate and prove the Hochschild-Kostant-Rosenberg theorem and an extension of this result involving the Connes differential.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Evolution
سال: 2017
ISSN: 2500-4239,2500-1418
DOI: 10.21603/2500-1418-2017-2-2-49-53