Extreme points in spaces of polynomials
نویسندگان
چکیده
منابع مشابه
Extreme and Exposed Points of Spaces of Integral Polynomials
We show that if E is a real Banach space such that E′ has the approximation property and such that `1 6↪→ ⊗̂ n,s, E then the set of extreme points of the unit ball of PI(E) is equal to {±φn : φ ∈ E′, ‖φ‖ = 1}. Under the additional assumption that E′ has a countable norming set we see that the set of exposed points of the unit ball of PI(E) is also equal to {±φn : φ ∈ E′, ‖φ‖ = 1}.
متن کاملOn the Extreme Points and Strongly Extreme Points in Köthe–bochner Spaces
We give the necessary conditions of extreme points and strongly extreme points in the unit ball of Köthe–Bochner spaces. The conditions have been shown to be sufficient earlier.
متن کاملOn fixed points of fundamentally nonexpansive mappings in Banach spaces
We first obtain some properties of a fundamentally nonexpansive self-mapping on a nonempty subset of a Banach space and next show that if the Banach space is having the Opial condition, then the fixed points set of such a mapping with the convex range is nonempty. In particular, we establish that if the Banach space is uniformly convex, and the range of such a mapping is bounded, closed and con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2003
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2003.v10.n5.a14