Extreme throat initial data set and horizon area-angular momentum inequality for axisymmetric black holes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Area-angular-momentum inequality for axisymmetric black holes.

We prove the local inequality A≥8π|J|, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. ...

متن کامل

Angular-momentum--mass inequality for axisymmetric black holes.

The inequality square root J <or=m is proved for vacuum, asymptotically flat, maximal, and axisymmetric data close to extreme Kerr data. The physical significance of this inequality and its relation to the standard picture of the gravitational collapse are discussed.

متن کامل

A universal inequality between angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter

We prove that for sub-extremal axisymmetric and stationary black holes with arbitrary surrounding matter the inequality 8π|J | < A holds, where J is the angular momentum and A the horizon area of the black hole. PACS numbers: 04.70.Bw, 04.40.-b, 04.20.Cv preprint number: AEI-2008-034

متن کامل

Proof of the Mass-angular Momentum Inequality for Bi-axisymmetric Black Holes with Spherical Topology

We show that extreme Myers-Perry initial data realize the unique absolute minimum of the total mass in a physically relevant (Brill) class of maximal, asymptotically flat, bi-axisymmetric initial data for the Einstein equations with fixed angular momenta. As a consequence, we prove the mass-angular momentum inequality in this setting for 5-dimensional spacetimes. That is, all data in this class...

متن کامل

Proof of the angular momentum-mass inequality for axisymmetric black holes

We prove that extreme Kerr initial data set is a unique absolute minimum of the total mass in a (physically relevant) class of vacuum, maximal, asymptotically flat, axisymmetric data for Einstein equations with fixed angular momentum. These data represent nonstationary, axially symmetric, black holes. As a consequence, we obtain that any data in this class satisfy the inequality √ J ≤ m, where ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2010

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.82.104010