Factorization method and the supersymmetric monopole harmonics
نویسندگان
چکیده
منابع مشابه
Recent Advances in the Spherical Harmonics Method
In his classic work on radiative transfer, Chandrasekhar introduced the discrete ordinates method for solving the integro-di erential equation of radiative transfer; the spherical harmonics method is a spectral analog of this method. Not surprisingly, there is a close connection between the spherical harmonics and discrete ordinates methods. The spherical harmonics method raises some interestin...
متن کاملThe Fermat factorization method revisited
We consider the well known Fermat factorization method, we call the Fermat factorization equation the equation solved by it: P(x, y) = (x+ 2R) − y − 4N = 0; where N = p q > 0 is a RSA modulus with primes p and q supposed of equal length. This equation is a bivariate integer polynomial equation and we propose to solve it directly using Coppersmith’s methods for bivariate integer polynomials. As ...
متن کاملOn the WZ Factorization of the Real and Integer Matrices
The textit{QIF} (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ} factorization. The WZ factorization can be faster than the textit{LU} factorization because, it performs the simultaneous evaluation of two columns or two rows. Here, we present a method for computing the real and integer textit{WZ} and textit{ZW} factoriz...
متن کاملThe Topological B-model on a Mini-Supertwistor Space and Supersymmetric Bogomolny Monopole Equations
In the recent paper hep-th/0502076, it was argued that the open topological Bmodel whose target space is a complex (2|4)-dimensional mini-supertwistor space with D3and D1-branes added corresponds to a super Yang-Mills theory in three dimensions. Without the D1-branes, this topological B-model is equivalent to a dimensionally reduced holomorphic Chern-Simons theory. Identifying the latter with a...
متن کاملA supersymmetric construction method
We present in this paper a rather general method for the construction of so-called conditionally exactly solvable potentials. This method is based on algebraic tools known from supersymmetric quantum mechanics. Various families of one-dimensional potentials are constructed whose corresponding Schrödinger eigenvalue problem can be solved exactly under certain conditions of the potential paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2003
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.1586476