Fairness First Clustering: A Multi-Stage Approach for Mitigating Bias

نویسندگان

چکیده

Fair clustering aims to partition a dataset while mitigating bias in the original dataset. Developing fair algorithms has gained increasing attention from machine learning community. In this paper, we propose k-means algorithm, first (FFC), which consists of an initialization stage, relaxation and improvement stage. is employed cluster each group. Then combination step refinement are applied ensure quality guarantee almost fairness. commonly used fairness metric, balance, utilized assess fairness, threshold set allow for improving quality. local search method improve without changing Comparisons carried out between our other state-of-the-art methods on 10 datasets, include both synthetic real-world datasets. The results show that compared with second highest balance value, FFC shares same SSE value one achieves lower values six

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

A heuristic approach for multi-stage sequence-dependent group scheduling problems

We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...

متن کامل

Multi-stage blind clustering equaliser

A multi-stage blind clustering algorithm is proposed for equalisation of multi-level quadrature amplitute modulation (M-$AM) channels. A hierarchical decomposition divides the task of equalising a high-order QAM channel into much simpler sub-tasks. Each sub-task can be accomplished fast and reliably using a blind clustering algorithm derived originally for 4-QAM signals. The constant modulus al...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

A Multi-level Approach for Document Clustering

The divisive MinMaxCut algorithm of Ding et al. [3] produces more accurate clustering results than existing document cluster methods. Multilevel algorithms [4, 1, 5, 7] have been used to boost the speed of graph partitioning algorithms. We combine these two algorithms to construct faster and more accurate algorithm. In this new algorithm, the original graph is coarsened, partitioned by the divi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12132969