Faithfulness in chain graphs: The discrete case
نویسندگان
چکیده
منابع مشابه
Faithfulness in chain graphs: The discrete case
This paper deals with chain graphs under the classic Lauritzen-Wermuth-Frydenberg interpretation. We prove that the strictly positive discrete probability distributions with the prescribed sample space that factorize according to a chain graph G with dimension d have positive Lebesgue measure wrt R, whereas those that factorize according to G but are not faithful to it have zero Lebesgue measur...
متن کاملFaithfulness in Chain Graphs: The Gaussian Case
This paper deals with chain graphs under the classic Lauritzen-Wermuth-Frydenberg interpretation. We prove that almost all the regular Gaussian distributions that factorize with respect to a chain graph are faithful to it. This result has three important consequences. First, chain graphs are more powerful than undirected graphs and acyclic directed graphs for representing regular Gaussian distr...
متن کاملLearning AMP Chain Graphs under Faithfulness
This paper deals with chain graphs under the alternative Andersson-Madigan-Perlman (AMP) interpretation. In particular, we present a constraint based algorithm for learning an AMP chain graph a given probability distribution is faithful to. We also show that the extension of Meek’s conjecture to AMP chain graphs does not hold, which compromises the development of efficient and correct score+sea...
متن کاملLearning Marginal AMP Chain Graphs under Faithfulness
Marginal AMP chain graphs are a recently introduced family of models that is based on graphs that may have undirected, directed and bidirected edges. They unify and generalize the AMP and the multivariate regression interpretations of chain graphs. In this paper, we present a constraint based algorithm for learning a marginal AMP chain graph from a probability distribution which is faithful to ...
متن کاملLearning Multivariate Regression Chain Graphs under Faithfulness
This paper deals with multivariate regression chain graphs, which were introduced by Cox and Wermuth (1993, 1996) to represent linear causal models with correlated errors. Specifically, we present a constraint based algorithm for learning a chain graph a given probability distribution is faithful to. We also show that for each Markov equivalence class of multivariate regression chain graphs the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2009
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2009.06.006