Fast multipole method for the biharmonic equation in three dimensions
نویسندگان
چکیده
منابع مشابه
Fast multipole method for the biharmonic equation in three dimensions
The evaluation of sums (matrix–vector products) of the solutions of the three-dimensional biharmonic equation can be accelerated using the fast multipole method, while memory requirements can also be significantly reduced. We develop a complete translation theory for these equations. It is shown that translations of elementary solutions of the biharmonic equation can be achieved by considering ...
متن کاملFast Multipole Method for the Biharmonic Equation
The evaluation of sums (matrix-vector products) of the solutions of the three-dimensional biharmonic equation can be accelerated using the fast multipole method, while memory requirements can also be significantly reduced. We develop a complete translation theory for these equations. It is shown that translations of elementary solutions of the biharmonic equation can be achieved by considering ...
متن کاملStability of the Fast Multipole Method for Helmholtz Equation in Three Dimensions
Stability limits for the diagonal forms approximating the free space Green’s function in Helmholtz’ equation are derived. It is shown that while the original approximation of the Green’s function is stable except for overflows, the diagonalized form becomes unstable due to errors from roundoff, interpolation, choice of quadrature rule and approximation of the translation operator. Numerical exp...
متن کاملA wideband fast multipole method for the Helmholtz equation in three dimensions
We describe a wideband version of the Fast Multipole Method for the Helmholtz equation in three dimensions. It unifies previously existing versions of the FMM for high and low frequencies into an algorithm which is accurate and efficient for any frequency, having a CPU time of O(N) if low-frequency computations dominate, or O(N logN) if high-frequency computations dominate. The performance of t...
متن کاملFourier-Based Fast Multipole Method for the Helmholtz Equation
The multilevel fast multipole method (MLFMM) is an algorithm that has had great success in reducing the computational time required to find the solution to the Galerkin boundary integral form of the Helmholtz equation. We present a new formulation of the MLFMM using Fourier basis functions rather than spherical harmonics in order to accelerate and simplify the time-critical stages of the algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2006
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2005.10.029