Fast Robust Correlation for High-Dimensional Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Ridge Regression for High-Dimensional Data

Ridge regression, being based on the minimization of a quadratic loss function, is sensitive to outliers. Current proposals for robust ridge regression estimators are sensitive to “bad leverage observations”, cannot be employed when the number of predictors p is larger than the number of observations n; and have a low robustness when the ratio p=n is large. In this paper a ridge regression esti...

متن کامل

Robust PCA for High-Dimensional Data

We consider the dimensionality-reduction problem for a contaminated data set in a very high dimensional space, i.e., the problem of finding a subspace approximation of observed data, where the number of observations is of the same magnitude as the number of variables of each observation, and the data set contains some outlying observations. We propose a High-dimension Robust Principal Component...

متن کامل

Fast Binary Embedding for High-Dimensional Data

Binary embedding of high-dimensional data requires long codes to preserve the discriminative power of the input space. Traditional binary coding methods often suffer from very high computation and storage costs in such a scenario. To address this problem, we propose two solutions which improve over existing approaches. The first method, Bilinear Binary Embedding (BBE), converts highdimensional ...

متن کامل

Methods for regression analysis in high-dimensional data

By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Technometrics

سال: 2019

ISSN: 0040-1706,1537-2723

DOI: 10.1080/00401706.2019.1677270