Faster Independent Component Analysis by Preconditioning With Hessian Approximations
نویسندگان
چکیده
منابع مشابه
Rank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملNew Approximations of Diierential Entropy for Independent Component Analysis and Projection Pursuit New Approximations of Diierential Entropy for Independent Component Analysis and Projection Pursuit New Approximations of Diierential Entropy for Independent Component Analysis and Projection Pursuit
We derive a rst-order approximation of the density of maximum entropy for a continuous 1-D random variable, given a number of simple constraints. This results in a density expansion which is somewhat similar to the classical polynomial density expansions by Gram-Charlier and Edgeworth. Using this approximation of density, an approximation of 1-D diierential entropy is derived. The approximation...
متن کاملPreconditioning for Hessian-Free Optimization
Recently Martens adapted the Hessian-free optimization method for the training of deep neural networks. One key aspect of this approach is that the Hessian is never computed explicitly, instead the Conjugate Gradient(CG) Algorithm is used to compute the new search direction by applying only matrix-vector products of the Hessian with arbitrary vectors. This can be done efficiently using a varian...
متن کاملNonlinear Independent Component Analysis By
Independent component analysis is often approached from an information theoretic perspective employing specific sample estimates for the mutual information between the separated outputs. These approximations involve the nonparametric estimation of signal entropies. The common approach involves the estimation of these quantities and adaptation based on these criteria. In contrast, in this paper,...
متن کاملIndependent Component Analysis by Minimization
Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. In this paper, the linear version of the ICA problem is approached from an information-theoretic viewpoint, using Comon's framework of minimizing mutual information of the components. Using max...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2018
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2018.2844203