Fault Detection and Diagnosis for Liquid Rocket Engines Based on Long Short-Term Memory and Generative Adversarial Networks

نویسندگان

چکیده

The development of health monitoring technology for liquid rocket engines (LREs) can effectively improve the safety and reliability launch vehicles, which has important theoretical engineering significance. Therefore, we propose a fault detection diagnosis (FDD) method large LOX/kerosene engine based on long short-term memory (LSTM) generative adversarial networks (GANs). Specifically, first modeled using MATLAB/Simulink simulated engine’s normal operation states involving various startup steady-state stages utilizing injection. Second, created an LSTM-GAN model trained with operating data LSTM as generator multilayer perceptron (MLP) discriminator. Third, test were input into discriminator to obtain discrimination results realize detection. Finally, predicted samples calculate absolute error between real value each parameter. Then index, standardized (SAE), was constructed. SAE analyzed diagnosis. highlight that proposed detects faults in processes, diagnoses process without missing alarm or being affected by false alarms. Compared conventional redline cut-off system (RCS), adaptive threshold algorithm (ATA), support vector machine (SVM), is more concise timely.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Hybrid-Knowledge-Models-Based Intelligent Fault Diagnosis Strategies for Liquid-propellant Rocket Engines

This paper focuses on a qualitative fault diagnosis method based on the integration and fusion of shallow and deep knowledge for liquid-propellant rocket engines (LRE). The paper firstly clarifies the concept and the types of LRE diagnosis knowledge. Later, from the isomorphic transform point of view, the paper analyses the correlation of different knowledge and knowledge representation, and fo...

متن کامل

Chinese Grammatical Error Diagnosis with Long Short-Term Memory Networks

Grammatical error diagnosis is an important task in natural language processing. This paper introduces our Chinese Grammatical Error Diagnosis (CGED) system in the NLP-TEA-3 shared task for CGED. The CGED system can diagnose four types of grammatical errors which are redundant words (R), missing words (M), bad word selection (S) and disordered words (W). We treat the CGED task as a sequence lab...

متن کامل

Reading Type Classification based on Generative Models and Bidirectional Long Short-Term Memory

Measuring the attention of users is necessary to design smart Human Computer Interaction (HCI) systems. Particularly, in reading, the reading types, so-called reading, skimming, and scanning are signs to express the degree of attentiveness. Eye movements are informative spatiotemporal data to measure quality of reading. Eye tracking technology is the tool to record eye movements. Even though th...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Aerospace

سال: 2022

ISSN: ['2226-4310']

DOI: https://doi.org/10.3390/aerospace9080399