Fault-tolerant gates via homological product codes
نویسندگان
چکیده
منابع مشابه
Fault-tolerant logical gates in quantum error-correcting codes∗
Recently, Bravyi and König have shown that there is a trade-off between fault-tolerantly implementable logical gates and geometric locality of stabilizer codes. They consider locality-preserving operations which are implemented by a constant-depth geometrically-local circuit and are thus fault-tolerant by construction. In particular, they shown that, for local stabilizer codes in D spatial dime...
متن کاملUsing concatenated quantum codes for universal fault-tolerant quantum gates.
We propose a method for universal fault-tolerant quantum computation using concatenated quantum error correcting codes. The concatenation scheme exploits the transversal properties of two different codes, combining them to provide a means to protect against low-weight arbitrary errors. We give the required properties of the error correcting codes to ensure universal fault tolerance and discuss ...
متن کاملUniversal Fault-Tolerant Gates on Concatenated Stabilizer Codes
It is an oft-cited fact that no quantum code can support a set of fault-tolerant logical gates that is both universal and transversal. This no-go theorem is generally responsible for the interest in alternative universality constructions including magic state distillation. Widely overlooked, however, is the possibility of nontransversal, yet still fault-tolerant, gates that work directly on sma...
متن کاملImplementation of Fault Tolerant Quantum Logic Gates via Optimal Control
The implementation of fault-tolerant quantum gates on encoded logic qubits is considered. It is shown that transversal implementation of logic gates based on simple geometric control ideas is problematic for realistic physical systems suffering from imperfections such as qubit inhomogeneity or uncontrollable interactions between qubits. However, this problem can be overcome by formulating the t...
متن کاملFault-tolerant Landau-Zener quantum gates
We present a method to perform fault-tolerant single-qubit gate operations using Landau-Zener tunneling. In a single Landau-Zener pulse, the qubit transition frequency is varied in time so that it passes through the frequency of the radiation field. We show that a simple three-pulse sequence allows eliminating errors in the gate up to the third order in errors in the qubit energies or the radia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum
سال: 2019
ISSN: 2521-327X
DOI: 10.22331/q-2019-02-04-120