Fault-tolerant quantum computation with local gates
نویسندگان
چکیده
منابع مشابه
Fault-Tolerant Quantum Computation with Local Gates
I discuss how to perform fault-tolerant quantum computation with concatenated codes using local gates in small numbers of dimensions. I show that a threshold result still exists in three, two, or one dimensions when next-to-nearest-neighbor gates are available, and present explicit constructions. In two or three dimensions, I also show how nearestneighbor gates can give a threshold result. In a...
متن کاملFault tolerant quantum computation with nondeterministic gates.
In certain approaches to quantum computing the operations between qubits are nondeterministic and likely to fail. For example, a distributed quantum processor would achieve scalability by networking together many small components; operations between components should be assumed to be failure prone. In the ultimate limit of this architecture each component contains only one qubit. Here we derive...
متن کاملLocal fault-tolerant quantum computation
We analyze and study the effects of locality on the fault-tolerance threshold for quantum computation. We analytically estimate how the threshold will depend on a scale parameter r which characterizes the scale-up in the size of the circuit due to encoding. We carry out a detailed seminumerical threshold analysis for concatenated coding using the seven-qubit CSS code in the local and the ‘nonlo...
متن کاملFault-Tolerant Quantum Computation
It has recently been realized that use of the properties of quantum mechanics might speed up certain computations dramatically. Interest in quantum computation has since been growing. One of the main difficulties in realizing quantum computation is that decoherence tends to destroy the information in a superposition of states in a quantum computer, making long computations impossible. A further...
متن کاملFault-tolerant Quantum Computation
The discovery of quantum error correction has greatly improved the long-term prospects for quantum computing technology. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment, or due to imperfect implementations of quantum logical operations. Recovery from errors can work effectively even if occasional mistakes occur during the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Modern Optics
سال: 2000
ISSN: 0950-0340,1362-3044
DOI: 10.1080/095003400148240