FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

نویسندگان

چکیده

Recently, promising applications in robotics and augmented reality have attracted considerable attention to 3D object detection from point clouds. In this paper, we present FCAF3D - a first-in-class fully convolutional anchor-free indoor method. It is simple yet effective method that uses voxel representation of cloud processes voxels with sparse convolutions. can handle large-scale scenes minimal runtime through single feed-forward pass. Existing methods make prior assumptions on the geometry objects, argue it limits their generalization ability. To get rid any assumptions, propose novel parametrization oriented bounding boxes allows obtaining better results purely data-driven way. The proposed achieves state-of-the-art terms [email protected] ScanNet V2 (+4.5), SUN RGB-D (+3.5), S3DIS (+20.5) datasets. code models are available at https://github.com/samsunglabs/fcaf3d.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Convolutional Grasp Detection Network with Oriented Anchor Box

In this paper, we present a real-time approach to predict multiple grasping poses for a parallel-plate robotic gripper using RGB images. A model with oriented anchor box mechanism is proposed and a new matching strategy is used during the training process. An end-to-end fully convolutional neural network is employed in our work. The network consists of two parts: the feature extractor and multi...

متن کامل

Deformable Part-based Fully Convolutional Network for Object Detection

Existing region-based object detectors are limited to regions with fixed box geometry to represent objects, even if those are highly non-rectangular. In this paper we introduce DP-FCN, a deep model for object detection which explicitly adapts to shapes of objects with deformable parts. Without additional annotations, it learns to focus on discriminative elements and to align them, and simultane...

متن کامل

R-FCN: Object Detection via Region-based Fully Convolutional Networks

We present region-based, fully convolutional networks for accurate and efficient object detection. In contrast to previous region-based detectors such as Fast/Faster R-CNN [7, 19] that apply a costly per-region subnetwork hundreds of times, our region-based detector is fully convolutional with almost all computation shared on the entire image. To achieve this goal, we propose position-sensitive...

متن کامل

Vehicle Detection from 3D Lidar Using Fully Convolutional Network

Convolutional network techniques have recently achieved great success in vision based detection tasks. This paper introduces the recent development of our research on transplanting the fully convolutional network technique to the detection tasks on 3D range scan data. Specifically, the scenario is set as the vehicle detection task from the range data of Velodyne 64E lidar. We proposes to presen...

متن کامل

Fully-Convolutional Siamese Networks for Object Tracking

The problem of arbitrary object tracking has traditionally been tackled by learning a model of the object’s appearance exclusively online, using as sole training data the video itself. Despite the success of these methods, their online-only approach inherently limits the richness of the model they can learn. Recently, several attempts have been made to exploit the expressive power of deep convo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2022

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-20080-9_28