Fermionic formula for double Kostka polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New fermionic formula for unrestricted Kostka polynomials

A new fermionic formula for the unrestricted Kostka polynomials of type A (1) n−1 is presented. This formula is different from the one given by Hatayama et al. and is valid for all crystal paths based on Kirillov–Reshetihkin modules, not just for the symmetric and anti-symmetric case. The fermionic formula can be interpreted in terms of a new set of unrestricted rigged configurations. For the p...

متن کامل

Fermionic Formulas For Unrestricted Kostka Polynomials And Superconformal Characters

The problem of finding fermionic formulas for the many generalizations of Kostka polynomials and for the characters of conformal field theories has been a very exciting research topic for the last few decades. In this dissertation we present new fermionic formulas for the unrestricted Kostka polynomials extending the work of Kirillov and Reshetikhin. We also present new fermionic formulas for t...

متن کامل

Double Affine Hecke Algebras, Conformal Coinvariants and Kostka Polynomials

We study a class of representations called “calibrated representations” of the degenerate double affine Hecke algebra and those of the rational Cherednik algebra of type GLn. We give a realization of calibrated irreducible modules as spaces of coinvariants constructed from integrable modules over the affine Lie algebra ĝl m . Moreover, we give a character formula of these irreducible modules in...

متن کامل

Fermionic Formulas for Level-restricted Generalized Kostka Polynomials and Coset Branching Functions

Level-restricted paths play an important rôle in crystal theory. They correspond to certain highest weight vectors of modules of quantum affine algebras. We show that the recently established bijection between Littlewood–Richardson tableaux and rigged configurations is well-behaved with respect to level-restriction and give an explicit characterization of level-restricted rigged configurations....

متن کامل

Ubiquity of Kostka Polynomials

We report about results revolving around Kostka–Foulkes and parabolic Kostka polynomials and their connections with Representation Theory and Combinatorics. It appears that the set of all parabolic Kostka polynomials forms a semigroup, which we call Liskova semigroup. We show that polynomials frequently appearing in Representation Theory and Combinatorics belong to the Liskova semigroup. Among ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 2018

ISSN: 0025-5645

DOI: 10.2969/jmsj/07017431