Finite and infinite speed of propagation for porous medium equations with nonlocal pressure

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Speed of Propagation for Stochastic Porous Media Equations

We prove finite speed of propagation for stochastic porous media equations perturbed by linear multiplicative space-time rough signals. Explicit and optimal estimates for the speed of propagation are given. The result applies to any continuous driving signal, thus including fractional Brownian motion for all Hurst parameters. The explicit estimates are then used to prove that the corresponding ...

متن کامل

Finite Speed of Propagation and Waiting Times for the Stochastic Porous Medium Equation: A Unifying Approach

In this paper, we develop an energy method to study finite speed of propagation and waiting time phenomena for the stochastic porous-media equation with linear multiplicative noise in up to three spatial dimensions. Based on a novel iteration technique and on stochastic counterparts of weighted integral estimates used in the deterministic setting, we formulate a sufficient criterion on the grow...

متن کامل

Finite speed of propagation for a non-local porous medium equation

This note is concerned with proving the finite speed of propagation for some non-local porous medium equation by adapting arguments developed by Caffarelli and Vázquez (2010). AMS Classification: 35K55, 35B30

متن کامل

Localization of solutions to stochastic porous media equations: finite speed of propagation∗

It is proved that the solutions to the slow diffusion stochastic porous media equation dX−∆(|X|m−1X)dt = σ(X)dWt, 1 < m ≤ 5, inO ⊂ R, d = 1, 2, 3, have the property of finite speed of propagation of disturbances for P-a.s. ω ∈ Ω on a sufficiently small time interval (0, t(ω)).

متن کامل

On Dual-Finite Volume Methods for Extended Porous Medium Equations

This article shows that the unconditional stability of the Dual-Finite Volume Method, which is at least valid for linear problems, is not true for generic nonlinear differential equations including the PMEs unless the coefficient appearing in the numerical fluxes are appropriately evaluated. This article provides a theoretically truly isotone numerical fluxes specialized for solving the PMEs pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2016

ISSN: 0022-0396

DOI: 10.1016/j.jde.2015.09.023