Finite Cohen--Macaulay Type and Smooth Non-Commutative Schemes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Cohen-macaulay Type and Smooth Non-commutative Schemes

A commutative local Cohen-Macaulay ring R of finite Cohen-Macaulay type is known to be an isolated singularity; that is, Spec(R) \ {m} is smooth. This paper proves a non-commutative analogue. Namely, if A is a (non-commutative) graded Artin-Schelter Cohen-Macaulay algebra which is FBN and has finite Cohen-Macaulay type, then the non-commutative projective scheme determined by A is smooth.

متن کامل

Local Rings of Finite Cohen-macaulay Type

Let (R,m) be a local Cohen-Macaulay ring whose m-adic completion R̂ has an isolated singularity. We verify the following conjecture of F.-O. Schreyer: R has finite Cohen-Macaulay type if and only if R̂ has finite Cohen-Macaulay type. We show also that the hypersurface k[[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type if and only if k [[x0, . . . , xd]]/(f) has finite Cohen-Macaulay type, whe...

متن کامل

A non-partitionable Cohen-Macaulay simplicial complex

A long-standing conjecture of Stanley states that every Cohen– Macaulay simplicial complex is partitionable. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.

متن کامل

g-Elements, finite buildings and higher Cohen-Macaulay connectivity

Chari proved that if ∆ is a (d − 1)-dimensional simplicial complex with a convex ear decomposition, then h0 ≤ · · · ≤ hbd/2c [7]. Nyman and Swartz raised the problem of whether or not the corresponding g-vector is an M -vector [18]. This is proved to be true by showing that the set of pairs (ω,Θ), where Θ is a l.s.o.p. for k[∆], the face ring of ∆, and ω is a g-element for k[∆]/Θ, is nonempty w...

متن کامل

Bi-Cohen-Macaulay graphs

In this paper we consider bi-Cohen-Macaulay graphs, and give a complete classification of such graphs in the case they are bipartite or chordal. General biCohen-Macaulay graphs are classified up to separation. The inseparable bi-CohenMacaulay graphs are determined. We establish a bijection between the set of all trees and the set of inseparable bi-Cohen-Macaulay graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Journal of Mathematics

سال: 2008

ISSN: 1496-4279,0008-414X

DOI: 10.4153/cjm-2009-018-4