Finite depth and Jacobson–Bourbaki correspondence

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite depth and Jacobson–Bourbaki correspondence

We introduce a notion of depth three tower C ⊆ B ⊆ A with depth two ring extension A|B being the case B = C . If A = End BC and B|C is a Frobenius extension with A|B|C depth three, then A|C is depth two. If A, B and C correspond to a tower G > H > K via group algebras over a base ring F , the depth three condition is the condition that K has normal closure KG contained in H . For a depth three ...

متن کامل

Finite Depth And

We introduce a notion of depth three tower of three rings C ⊆ B ⊆ A with depth two ring extension A |B recovered when B = C. If A = EndBC and B |C is a Frobenius extension, this captures the notion of depth three for a Frobenius extension in [12, 13] such that if B |C is depth three, then A |C is depth two (a phenomenon of finite depth subfactors, see [20]). We provide a similar definition of f...

متن کامل

Depth Preservation in Local Theta Correspondence

In this paper, we prove that the depths of irreducible admissible representations are preserved by the local theta correspondence for any type I reductive dual pairs over a nonarchimedean local field.

متن کامل

Shimura Correspondence for Finite Groups

Let G be a simply connected Chevalley group corresponding to an irreducible simply laced root system. Then the finite group G(Z/4Z) has a two fold central extension G(Z/4Z) realized as a Steinberg group. In this paper we construct a natural correspondence between genuine representations of G(Z/4Z) and representations of the Chevalley group G(Z/2Z).

متن کامل

Amodal completion and the perception of depth without binocular correspondence.

Half-occlusions and illusory contours have recently been used to show that depth can be perceived in the absence of binocular correspondence and that there is more to stereopsis than solving the correspondence problem. In the present study we show a new way for depth to be assigned in the absence of binocular correspondence, namely amodal completion. Although an occluder removed all possibility...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2008

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2007.11.007