Finite difference schemes for the two-dimensional multi-term time-fractional diffusion equations with variable coefficients

نویسندگان

چکیده

Two implicit finite difference schemes for solving the two-dimensional multi-term time-fractional diffusion equation with variable coefficients are considered in this paper. The orders of Riemann–Liouville fractional time derivatives acting on spatial can be different various directions. By integrating original partial differential first, and second-order approximated by central quotients, then fully discrete scheme obtained after right rectangular quadrature formulae used to approximate resulting integrals. convergence analysis is given energy method, showing that first-order accurate second order space. Based a approximation using weighted shifted Grünwald operator, we present Crank–Nicolson prove it both Numerical results provided verify accuracy efficiency two proposed algorithms. theoretical generalized three-dimensional problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Finite difference Schemes for Variable-Order Time fractional Diffusion equation

Variable-order fractional diffusion equation model is a recently developed and promising approach to characterize time-dependent or concentration-dependent anomalous diffusion, or diffusion process in inhomogeneous porous media. To further study the properties of variableorder time fractional subdiffusion equation models, the efficient numerical schemes are urgently needed. This paper investiga...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational & Applied Mathematics

سال: 2021

ISSN: ['1807-0302', '2238-3603']

DOI: https://doi.org/10.1007/s40314-021-01551-1