Finite groups having an involution centralizer with a PSU(3, 3) component
نویسندگان
چکیده
منابع مشابه
Involution Statistics in Finite Coxeter Groups
Let W be a finite Coxeter group and X a subset of W . The length polynomial LW,X(t) is defined by LW,X(t) = ∑ x∈X t `(x), where ` is the length function on W . In this article we derive expressions for the length polynomial where X is any conjugacy class of involutions, or the set of all involutions, in any finite Coxeter group W . In particular, these results correct errors in [6] for the invo...
متن کاملOn solubility of groups with bounded centralizer chains
The c-dimension of a group is the maximum length of a chain of nested centralizers. It is proved that a periodic locally soluble group of finite cdimension k is soluble of derived length bounded in terms of k, and the rank of its quotient by the Hirsch–Plotkin radical is bounded in terms of k. Corollary: a pseudo-(finite soluble) group of finite c-dimension k is soluble of derived length bounde...
متن کاملCommuting Involution Graphs for 3-Dimensional Unitary Groups
For a group G and X a subset of G the commuting graph of G on X, denoted by C(G,X), is the graph whose vertex set is X with x, y ∈ X joined by an edge if x 6= y and x and y commute. If the elements in X are involutions, then C(G,X) is called a commuting involution graph. This paper studies C(G,X) when G is a 3-dimensional projective special unitary group and X a G-conjugacy class of involutions...
متن کاملFinite groups with three relative commutativity degrees
For a finite group $G$ and a subgroup $H$ of $G$, the relative commutativity degree of $H$ in $G$, denoted by $d(H,G)$, is the probability that an element of $H$ commutes with an element of $G$. Let $mathcal{D}(G)={d(H,G):Hleq G}$ be the set of all relative commutativity degrees of subgroups of $G$. It is shown that a finite group $G$ admits three relative commutativity degrees if a...
متن کاملFinite groups have even more centralizers
For a finite group $G$, let $Cent(G)$ denote the set of centralizers of single elements of $G$. In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent, then $Gcong S_3, D_{10}$ or $S_3times S_3$. This result gives a partial and positive answer to a conjecture raised by A. R. Ashrafi [On finite groups with a given number of centralizers, Algebra Collo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1981
ISSN: 0021-8693
DOI: 10.1016/0021-8693(81)90303-3