Finite Groups with Faithful Irreducible and Directly Indecomposable Modular Representations
نویسندگان
چکیده
منابع مشابه
Irreducible Modular Representations of Finite and Algebraic Groups
In these notes we outline some aspects of the modular representation theories of finite groups of Lie type in defining and cross-characteristics, with particular interest paid to how these theories relate to the modular representation theory of algebraic groups and the (characteristic 0) representation theory of Lie algebras and quantum groups. We begin by summarizing some classical results on ...
متن کاملComputing Irreducible Representations of Finite Groups
We consider the bit-complexity of the problem stated in the title. Exact computations in algebraic number fields are performed symbolically. We present a polynomial-time algorithm to find a complete set of nonequivalent irreducible representations over the field of complex numbers of a finite group given by its multiplication table. In particular, it follows that some representative of each equ...
متن کاملIrreducible Representations of Finite Spin Groups
In this paper we present a computation (done by the author in 1983) which yields a multiplicity one statement for the irreducible representations of a finite spin group which, in turn, yields the classification of the irreducible representations of a finite spin group. Introduction 0.1. Let G be a connected reductive group defined over a finite field Fq and let F : G → G be the corresponding Fr...
متن کاملGroups with Two Extreme Character Degrees and their Minimal Faithful Representations
for a finite group G, we denote by p(G) the minimal degree of faithful permutation representations of G, and denote by c(G), the minimal degree of faithful representation of G by quasi-permutation matrices over the complex field C. In this paper we will assume that, G is a p-group of exponent p and class 2, where p is prime and cd(G) = {1, |G : Z(G)|^1/2}. Then we will s...
متن کاملOn Minimal Faithful Permutation Representations of Finite Groups
The minimal faithful permutation degree n(G) of a finite group G is the least positive integer n such that G is isomorphic to a subgroup of the symmetric group Sn. Let AT be a normal subgroup of a finite group G. We prove that n(G/N) $C /i(G) if G/N has no nontrivial Abelian normal subgroup. There is an as yet unproved conjecture that the same conclusion holds if G/N is Abelian. We investigate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy
سال: 1947
ISSN: 0021-4280
DOI: 10.2183/pjab1945.23.22