Finite state Markov decision models with average reward criteria

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudometrics for State Aggregation in Average Reward Markov Decision Processes

We consider how state similarity in average reward Markov decision processes (MDPs) may be described by pseudometrics. Introducing the notion of adequate pseudometrics which are well adapted to the structure of the MDP, we show how these may be used for state aggregation. Upper bounds on the loss that may be caused by working on the aggregated instead of the original MDP are given and compared ...

متن کامل

Average-Reward Decentralized Markov Decision Processes

Formal analysis of decentralized decision making has become a thriving research area in recent years, producing a number of multi-agent extensions of Markov decision processes. While much of the work has focused on optimizing discounted cumulative reward, optimizing average reward is sometimes a more suitable criterion. We formalize a class of such problems and analyze its characteristics, show...

متن کامل

Bounded Parameter Markov Decision Processes with Average Reward Criterion

Bounded parameter Markov Decision Processes (BMDPs) address the issue of dealing with uncertainty in the parameters of a Markov Decision Process (MDP). Unlike the case of an MDP, the notion of an optimal policy for a BMDP is not entirely straightforward. We consider two notions of optimality based on optimistic and pessimistic criteria. These have been analyzed for discounted BMDPs. Here we pro...

متن کامل

The Policy Iteration Algorithm for Average Reward Markov Decision Processes with General State Space

The average cost optimal control problem is addressed for Markov decision processes with unbounded cost. It is found that the policy iteration algorithm generates a sequence of policies which are c-regular (a strong stability condition), where c is the cost function under consideration. This result only requires the existence of an initial c-regular policy and an irreducibility condition on the...

متن کامل

Markov Decision Models with Weighted Discounted Criteria

We consider a discrete time Markov Decision Process with innnite horizon. The criterion to be maximized is the sum of a number of standard discounted rewards, each with a diierent discount factor. Situations in which such criteria arise include modeling investments, production, modeling projects of diierent durations and systems with multiple criteria, and some axiomatic formulations of multi-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 1994

ISSN: 0304-4149

DOI: 10.1016/0304-4149(94)90116-3