Finitely generated pseudocomplemented distributive lattices
نویسندگان
چکیده
منابع مشابه
Unification on Subvarieties of Pseudocomplemented Distributive Lattices
Syntactic unification theory is concerned with the problem of finding a substitution that equalises a finite set of pairs of terms simultaneously. More precisely, given a set of function symbols L and a finite set of pairs of L-terms U = {(t1, s1), . . . , (tm, sm)}, called a unification problem, a unifier for U is a substitution σ defined on the set of variables of the terms in U such that σ(t...
متن کاملThe Structure of Pseudocomplemented Distributive Lattices. I: Subdirect Decomposition
In this paper all subdirectly irreducible pseudocomplemented distributive lattices are found. This result is used to establish a Stone-like representation theorem conjectured by G. Grätzer and to find all equational subclasses of the class of pseudocomplemented distributive lattices.
متن کاملHomomorphisms and Endomorphisms in Varieties of Pseudocomplemented Distributive Lattices (with Applications to Heyting Algebras)
According to a result by K. B. Lee, the lattice of varieties of pseudocomplemented distributive lattices is the ui + 1 chain B_i C Bo C Bi C • ■ ■ C Bn C •■ • C Bw in which the first three varieties are formed by trivial, Boolean, and Stone algebras respectively. In the present paper it is shown that any Stone algebra is determined within Bi by its endomorphism monoid, and that there are at mos...
متن کاملCongruence lattices of pseudocomplemented semilattices
Congruence lattices of algebras in various varieties have been studied extensively in the literature. For example, congruence lattices (i.e. lattices of ideals) of Boolean algebras were characterized by Nachbin [18] (see also Gratzer [9] and Jonsson [16]) while congruence lattices of semilattices were investigated by Papert [19], Dean and Oehmke [4] and others. In this paper we initiate the inv...
متن کاملThe Structure of Pseudocomplemented Distributive Lattices. Ii: Congruence Extension and Amalgamation
This paper continues the examination of the structure of pseudocomplemented distributive lattices. First, the Congruence Extension Property is proved. This is then applied to examine properties of the equational classes ¿Sn, — lá«So), which is a complete list of all the equational classes of pseudocomplemented distributive lattices (see Part I). The standard semigroups (i.e., the semigroup gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 1975
ISSN: 1446-7887,1446-8107
DOI: 10.1017/s1446788700029530