First stability eigenvalue of singular minimal hypersurfaces in spheres

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First stability eigenvalue characterization of Clifford hypersurfaces

ABSTRACT : The stability operator of a compact oriented minimal hypersurface Mn−1 ⊂ S is given by J = −∆ − ‖A‖ − (n − 1), where ‖A‖ is the norm of the second fundamental form. Let λ1 be the first eigenvalue of J and define β = −λ1 − 2(n − 1). In [S] Simons proved that β ≥ 0 for any non-equatorial minimal hypersurface M ⊂ S. In this paper we will show that β = 0 only for Clifford hypersurfaces. ...

متن کامل

Inductive Analysis on Singular Minimal Hypersurfaces

The geometric analysis of a minimal hypersurface H within some Riemannian manifold (M, g) with second fundamental form A usually involves the scalar quantity |A|2 = sum of squared principal curvatures. A few classical examples are seen from Simons type inequalities like: ∆H |A|2 ≥ −C · (1 + |A|2)2 or the stability condition (valid in particular for area minimizers): 0 ≤ Area(f) = ∫ H |∇Hf |2 − ...

متن کامل

06 Singular Minimal Hypersurfaces and Scalar Curvature

Finding obstructions to positive scalar curvature and getting structural insight is presently based on two competing approaches: one path which is most travelled works in the context of spin geometry and gives quite a direct link to topology (cf. [GL1-2] and [G]). The second, much less used but a priori more general method of attack analyzes minimal hypersurfaces within the manifold under consi...

متن کامل

The Pinching Constant of Minimal Hypersurfaces in the Unit Spheres

In this paper, we prove that if Mn (n ≤ 8) is a closed minimal hypersurface in a unit sphere Sn+1(1), then there exists a positive constant α(n) depending only on n such that if n ≤ S ≤ n+ α(n), then M is isometric to a Clifford torus, where S is the squared norm of the second fundamental form of M .

متن کامل

On the Average of the Scalar Curvature of Minimal Hypersurfaces of Spheres with Low Stability Index

In this paper we show that if the stability index of M is equal to n+2, then the average of the function |A|2 is less than or equal to n − 1. Moreover, if this average is equal to n − 1, then M must be isometric to a Clifford minimal hypersurface.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2018

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-018-1417-8