Flexible parametric joint modelling of longitudinal and survival data
نویسندگان
چکیده
منابع مشابه
Flexible parametric joint modelling of longitudinal and survival data.
The joint modelling of longitudinal and survival data is a highly active area of biostatistical research. The submodel for the longitudinal biomarker usually takes the form of a linear mixed effects model. We describe a flexible parametric approach for the survival submodel that models the log baseline cumulative hazard using restricted cubic splines. This approach overcomes limitations of stan...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملJoint modeling of longitudinal categorical data and survival data
In many biomedical studies, it is of interest to study the covariate effect on both longitudinal categorical outcomes and survival outcomes. For example, in cancer research, it is of interest to study the treatment effect on both quality of life which is a categorical outcome measured longitudinally and survival time. In this talk, we will discuss such joint models. Random effects are introduce...
متن کاملJoint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification
A now common goal in medical research is to investigate the inter-relationships between a repeatedly measured biomarker, measured with error, and the time to an event of interest. This form of question can be tackled with a joint longitudinal-survival model, with the most common approach combining a longitudinal mixed effects model with a proportional hazards survival model, where the models ar...
متن کاملJoint modeling of survival and longitudinal data: likelihood approach revisited.
The maximum likelihood approach to jointly model the survival time and its longitudinal covariates has been successful to model both processes in longitudinal studies. Random effects in the longitudinal process are often used to model the survival times through a proportional hazards model, and this invokes an EM algorithm to search for the maximum likelihood estimates (MLEs). Several intriguin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Medicine
سال: 2012
ISSN: 0277-6715
DOI: 10.1002/sim.5644