Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow
نویسندگان
چکیده
منابع مشابه
Hyperbolic Systems of Conservation Laws
Its purpose is to provide an account of some recent advances in the mathematical theory of hyperbolic systems of conservation laws in one space dimension. After a brief review of basic concepts, we describe in detail the method of wave-front tracking approximation and present some of the latest results on uniqueness and stability of entropy weak solutions. 1-Review of basic theory. This chapter...
متن کاملHyperbolic Systems of Conservation Laws
Conservation laws are first order systems of quasilinear partial differential equations in divergence form; they express the balance laws of continuum physics for media with "elastic" response, in which internal dissipation is neglected. The absence of internal dissipation is manifested in the emergence of solutions with jump discontinuities across manifolds of codimension one, representing, in...
متن کاملSystems of Hyperbolic Conservation Laws with Memory
Global weak solutions of bounded variation to systems of balance laws with non-local source are constructed by the method of vanishing viscosity. Suitable dissipativeness assumptions are imposed on the source terms to assure convergence of the method. Under these hypotheses, the total variation remains uniformly bounded and integrable in time, the vanishing viscosity solutions are uniformly sta...
متن کاملHigh-Order Central Schemes for Hyperbolic Systems of Conservation Laws
A family of shock capturing schemes for the approximate solution of hyperbolic systems of conservation laws is presented. The schemes are based on a modified ENO reconstruction of pointwise values from cell averages and on approximate computation of the flux on cell boundaries. The use of a staggered grid avoids the need of a Riemann solver. The integral of the fluxes is computed by Simpson’s r...
متن کاملKrylov-Riemann Solver for Large Hyperbolic Systems of Conservation Laws
This paper presents a Riemann solver for nonlinear hyperbolic systems of conservation laws based on a Krylov subspace approximation of the upwinding dissipation vector. In the general case, the solver does not require any detailed information of the eigensystem, except an estimate of the global maximal propagation speed. It uses successive flux function evaluations to obtain a numerical flux wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Fluids
سال: 2014
ISSN: 0271-2091
DOI: 10.1002/fld.3957