Flow Through Randomly Curved Manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow Through Randomly Curved Manifolds

We present a computational study of the transport properties of campylotic (intrinsically curved) media. It is found that the relation between the flow through a campylotic media, consisting of randomly located curvature perturbations, and the average Ricci scalar of the system, exhibits two distinct functional expressions, depending on whether the typical spatial extent of the curvature pertur...

متن کامل

Flow Through Randomly Curved Media

M. Mendoza, ∗ S. Succi, † and H. J. Herrmann 3, ‡ ETH Zürich, Computational Physics for Engineering Materials, Institute for Building Materials, Schafmattstrasse 6, HIF, CH-8093 Zürich (Switzerland) Istituto per le Applicazioni del Calcolo C.N.R., Via dei Taurini, 19 00185, Rome (Italy), and Freiburg Institute for Advanced Studies, Albertstrasse, 19, D-79104, Freiburg, (Germany) Departamento de...

متن کامل

Quantization on Curved Manifolds

Since the early days of quantum mechanics many techniques have been developed in order to deal with manifolds with non-trivial topology. Among them two techniques have received a great attention in the literature and are shortly reviewed here as they are most geometrical in nature. These are the Kostant–Souriau geometric quantization scheme and the so called constrained quantum mechanics. A not...

متن کامل

Negatively Ricci Curved Manifolds

In this paper we announce the following result: “Every manifold of dimension ≥ 3 admits a complete negatively Ricci curved metric.” Furthermore we describe some sharper results and sketch proofs.

متن کامل

Diffeomorphisms of Curved Manifolds

We obtain an expression for the curvature of the Lie group SDiffM and use it to derive Lukatskii's formula for the case where M is locally Euclidean. We discuss qualitatively some previous findings for SDiffS 2 in conjunction with our result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2013

ISSN: 2045-2322

DOI: 10.1038/srep03106