Fluid viscoelasticity suppresses chaotic convection and mixing due to electrokinetic instability

نویسندگان

چکیده

When two fluids of different electrical conductivities are transported side by in a microfluidic device under the influence an electric field, electrokinetic instability (EKI) is often generated after some critical values applied field strength and conductivity ratio. Many prior experimental numerical studies show that this phenomenon results chaotic flow inside microdevice, thereby facilitating mixing if they Newtonian behavior. However, present study shows convection arising due to can be suppressed viscoelastic instead ones. In particular, we observe as Weissenberg number (ratio elastic viscous forces) gradually increases polymer viscosity ratio solvent zero-shear rate polymeric solution) decreases, fluctuation T junction decreases within range conditions encompassed study. We demonstrate suppression motion occurs formation strand high stresses at interface fluids. further (particularly, span-wise one) inhibits Therefore, one needs cautious when EKI planned use for such Our observations line with seen limited conducted these kinds

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions.

Due to electric field leakage across sharp corners, the irrotational character of Ohmic electroosmotic flow is violated. Instead, we demonstrate experimentally and theoretically evidence of electrolyte depletion and vortex separation in electroosmotic flow around a junction between wide and narrow channels. When the penetration length of the electric field exceeds the width of the narrow channe...

متن کامل

Fluid Mixing Control Inside a Y - shaped Microchannel by Using Electrokinetic Instability

A parametric study was conducted to improve our understanding pertaining to the fundamental physics of electrokinetic instability (EKI) and to explore the effectiveness of manipulating EKI waves to control/enhance fluid mixing inside a Y-shaped microchannel. The dependence of the critical strength of the applied static electric field to trigger the EKI waves on the conductivity ratio of the two...

متن کامل

Fluid Mixing Control inside a Y-shaped Microchannel by Using Electrokinetic Instability

An experimental study was conducted to further our understanding about the fundamental physics of electrokinetic instability (EKI) and to explore the effectiveness to enhance fluid mixing inside a Y-shaped microchannel by manipulating convective EKI waves. The dependence of the critical voltage of applied static electric field to trig EKI to generate convective EKI waves on the conductivity rat...

متن کامل

Investigation of electrokinetic mixing in 3D non-homogenous microchannels

A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...

متن کامل

Eects of convection instability due to incompatibility between ocean dynamics and surface forcings

The study demonstrates that an incompatibility between a surface temperature climatology and a given ocean model, into which the climatology is assimilated via Haney restoration, can cause model ocean climate drift and interdecadal oscillations when the ocean is switched to a weaker restoration. This is made using an idealized Atlantic Ocean model driven by thermal and wind forcing only. Initia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2022

ISSN: ['1527-2435', '1089-7666', '1070-6631']

DOI: https://doi.org/10.1063/5.0099481