Forbidden induced subgraph characterization of circle graphs within split graphs
نویسندگان
چکیده
منابع مشابه
Forbidden subgraph characterization of bipartite unit probe interval graphs
A graph is a probe interval graph (PIG) if its vertices can be partitioned into probes and nonprobes with an interval assigned to each vertex so that vertices are adjacent if and only if their corresponding intervals intersect and at least one of the vertices is a probe. When all intervals have the same length (or equivalently, no interval contains another properly) the graph is a unit probe in...
متن کاملColoring Graphs Characterized by a Forbidden Subgraph
The Coloring problem is to test whether a given graph can be colored with at most k colors for some given k, such that no two adjacent vertices receive the same color. The complexity of this problem on graphs that do not contain some graph H as an induced subgraph is known for each fixed graph H. A natural variant is to forbid a graph H only as a subgraph. We call such graphs strongly H-free an...
متن کاملForbidden subgraph characterization of extended star directed path graphs that are not rooted directed path graphs
An asteroidal triple in a graph is a set of three non-adjacent vertices such that for any two of them there exists a path between them that does not intersect the neighborhood of the third. An asteroidal quadruple is a set of four non-adjacent vertices such that any three of them is an asteroidal triple. In this paper, we study a subclass of directed path graph, the class of extended star direc...
متن کاملForbidden induced bipartite graphs
Given a fixed bipartite graph H, we study the asymptotic speed of growth of the number of bipartite graphs on n vertices which do not contain an induced copy of H. Whenever H contains either a cycle or the bipartite complement of a cycle, the speed of growth is 2Ω(n 6 5 ). For every other bipartite graph except the path on seven vertices, we are able to find both upper and lower bounds of the f...
متن کاملLabeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2021
ISSN: 0166-218X
DOI: 10.1016/j.dam.2020.12.021