Force Field Parametrization of Metal Ions from Statistical Learning Techniques

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Force Field Parametrization of Metal Ions from Statistical Learning Techniques

A novel statistical procedure has been developed to optimize the parameters of nonbonded force fields of metal ions in soft matter. The criterion for the optimization is the minimization of the deviations from ab initio forces and energies calculated for model systems. The method exploits the combination of the linear ridge regression and the cross-validation techniques with the differential ev...

متن کامل

Application of statistical techniques and artificial neural network to estimate force from sEMG signals

This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...

متن کامل

Parametrization of a reactive force field for aluminum hydride.

A reactive force field, REAXFF, for aluminum hydride has been developed based on density functional theory (DFT) derived data. REAXFF(AlH(3)) is used to study the dynamics governing hydrogen desorption in AlH(3). During the abstraction process of surface molecular hydrogen charge transfer is found to be well described by REAXFF(AlH(3)). Results on heat of desorption versus cluster size show tha...

متن کامل

A supervised fitting approach to force field parametrization with application to the SIBFA polarizable force field

A supervised, semiautomated approach to force field parameter fitting is described and applied to the SIBFA polarizable force field. The I-NoLLS interactive, nonlinear least squares fitting program is used as an engine for parameter refinement while keeping parameter values within a physical range. Interactive fitting is shown to avoid many of the stability problems that frequently afflict high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Chemical Theory and Computation

سال: 2017

ISSN: 1549-9618,1549-9626

DOI: 10.1021/acs.jctc.7b00779