Forced vibrations of superquadratic Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
A multiplicity result for a class of superquadratic Hamiltonian systems
We establish the existence of two nontrivial solutions to semilinear elliptic systems with superquadratic and subcritical growth rates. For a small positive parameter λ, we consider the system −∆v = λf(u) in Ω, −∆u = g(v) in Ω, u = v = 0 on ∂Ω, where Ω is a smooth bounded domain in R with N ≥ 1. One solution is obtained applying Ambrosetti and Rabinowitz’s classical Mountain Pass Theorem, and t...
متن کاملExistence of Homoclinic Orbits for Hamiltonian Systems with Superquadratic Potentials
and Applied Analysis 3 We make the following assumptions. A1 W t, z ∈ C1 R × R2N,R is 1-periodic in t. W t, 0 0 for all t ∈ R. There exist constants c1 > 0 and μ > 2 such that Wz t, z z ≥ c1|z| for t, z ∈ R × R2N. A2 there exist c2, r > 0 such that |Wz t, z | ≤ c2|z|μ−1 for t ∈ R and |z| ≤ r. A3 there exist c3, R ≥ r and p ≥ μ such that |Wz t, z | ≤ c3|z|p−1 for t ∈ R and |z| ≥ R. A4 there exis...
متن کاملHomoclinic Orbits of Nonperiodic Superquadratic Hamiltonian System
In this paper, we study the following first-order nonperiodic Hamiltonian system ż = JHz(t, z), where H ∈ C1(R× R ,R) is the form H(t, z) = 1 2 L(t)z · z + R(t, z). Under weak superquadratic condition on the nonlinearitiy. By applying the generalized Nehari manifold method developed recently by Szulkin and Weth, we prove the existence of homoclinic orbits, which are ground state solutions for a...
متن کاملMultiple periodic solutions for superquadratic second-order discrete Hamiltonian systems
Some multiplicity results are obtained for periodic solutions of the nonautonomous superquadratic second-order discrete Hamiltonian systems Duðt 1Þ þ rF ðt; uðtÞÞ 1⁄4 0 8t 2 Z 0096-3 doi:10. q Sup Outsta * Co E-m Plea Com by using critical point theory, especially, a three critical points theorem proposed by Brezis and Nirenberg. 2007 Elsevier Inc. All rights reserved.
متن کاملStructure-preserving Model Reduction of Forced Hamiltonian Systems
This paper reports a development in the proper symplectic decomposition (PSD) for model reduction of forced Hamiltonian systems. As an analogy to the proper orthogonal decomposition (POD), PSD is designed to build a symplectic subspace to fit empirical data. Our aim is two-fold. First, to achieve computational savings for large-scale Hamiltonian systems with external forces. Second, to simultan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica
سال: 1984
ISSN: 0001-5962
DOI: 10.1007/bf02392196