Fractal energy gaps and topological invariants in hBN/graphene/hBN double moiré systems
نویسندگان
چکیده
We calculate the electronic structure in quasiperiodic double-moir\'e systems of graphene sandwiched by hexagonal boron nitride, and identify topological invariants energy gaps. find that spectrum contains a number minigaps, they exhibit recursive fractal similar to Hofstadter butterfly when plotted against twist angle. Each gaps can be characterized set integers, which are associated with an area momentum space. The corresponding is geometrically interpreted as quasi Brillouin zone, polygon enclosed multiple Bragg planes composite periods uniquely specified plain wave projection weak potential limit.
منابع مشابه
Measuring Topological Invariants in Photonic Systems
Motivated by the recent theoretical and experimental progress in implementing topological orders with photons, we analyze photonic systems with different topologies and present a scheme to probe their topological features. Specifically, we propose a scheme to modify the boundary phases to manipulate edge state dynamics. Such a scheme allows one to measure the winding number of the edge states. ...
متن کاملeconomic optimization and energy consumption in tray dryers
دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...
15 صفحه اولBoxicity and topological invariants
The boxicity of a graph G = (V,E) is the smallest integer k for which there exist k interval graphs Gi = (V,Ei), 1 ≤ i ≤ k, such that E = E1 ∩ · · · ∩ Ek. Equivalently, the boxicity of G is the smallest integer d ≥ 1 such that G is the intersection graph of a collection of boxes in R (a box in R the cartesian product of d closed intervals of the real line). In the first part of the talk, I will...
متن کاملAnalytic and Topological Invariants
We construct skew-adjoint operators associated to nowhere zero vector elds on manifolds with vanishing Euler number. The mod 2 indices of these operators provide potentially new invariants for such manifolds. An odd index theorem for corresponding Toeplitz operators is established. This last result may be viewed as an odd dimensional analogue of the Gauss-Bonnet-Chern theorem. It is well-known ...
متن کاملDistance-Based Topological Indices and Double graph
Let $G$ be a connected graph, and let $D[G]$ denote the double graph of $G$. In this paper, we first derive closed-form formulas for different distance based topological indices for $D[G]$ in terms of that of $G$. Finally, as illustration examples, for several special kind of graphs, such as, the complete graph, the path, the cycle, etc., the explicit formulas for some distance based topologica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2021
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevb.104.035306