FRACTIONAL PROCESSES: FROM POISSON TO BRANCHING ONE
نویسندگان
چکیده
منابع مشابه
Fractional Processes: from Poisson to Branching One
Fractional generalizations of the Poisson process and branching Furry process are considered. The link between characteristics of the processes, fractional differential equations and Lèvy stable densities are discussed and used for construction of the Monte Carlo algorithm for simulation of random waiting times in fractional processes. Numerical calculations are performed and limit distribution...
متن کاملPoisson representations of branching Markov and measure-valued branching processes
Representations of measure-valued processes in terms of countable systems of particles are constructed for models with spatially varying birth and death rates. Each particle has a location and a “level,” but unlike earlier constructions, the levels change with time. In fact, death of a particle occurs only when the level of the particle hits infinity. For each time t the joint distribution of l...
متن کاملBranching Processes with Negative Poisson Offspring Distribution
A branching process is a mathematical description of the growth of a population for which the individual produces offsprings according to stochastic laws. A typical problem would be of the following form. Considering a population of individuals developing from a single progenitor, the initial individual. The initial individual produces a random number of offsprings, each of them in turn produce...
متن کاملParameter Estimation for Fractional Poisson Processes
The paper proposes a formal estimation procedure for parameters of the fractional Poisson process (fPp). Such procedures are needed to make the fPp model usable in applied situations. The basic idea of fPp, motivated by experimental data with long memory is to make the standard Poisson model more flexible by permitting nonexponential, heavy-tailed distributions of interarrival times and differe...
متن کاملAlternative Forms of Compound Fractional Poisson Processes
and Applied Analysis 3 where the first term refers to the probability mass concentrated in the origin, δ y denotes the Dirac delta function, and fYβ denotes the density of the absolutely continuous component. The function gYβ given in 1.5 satisfies the following fractional master equation, that is, ∂ ∂tβ gYβ ( y, t ) −λgYβ ( y, t ) λ ∫ ∞ −∞ gYβ ( y − x, t ) fX x dx, 1.6 where ∂/∂t is the Caputo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Bifurcation and Chaos
سال: 2008
ISSN: 0218-1274,1793-6551
DOI: 10.1142/s0218127408021932