Fredholm eigen value problem for general domains
نویسندگان
چکیده
منابع مشابه
A General Fredholm Theory III: Fredholm Functors and Polyfolds
2 Ep-Groupoids and Generalized Maps 17 2.1 Ep-Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Functors and Equivalences . . . . . . . . . . . . . . . . . . . . 21 2.3 Inversion of Equivalences and Generalized Maps . . . . . . . . 28 2.4 Strong Bundles over Ep-Groupoids . . . . . . . . . . . . . . . 33 2.5 Auxiliary Norms . . . . . . . . . . . . . . . . . . . . . . . . . 4...
متن کاملZdeněK Šmarda ON SINGULAR INITIAL VALUE PROBLEM FOR NONLINEAR FREDHOLM INTEGRODIFFERENTIAL EQUATIONS
There are given conditions for the solvability of the singular initial value problem for Fredholm integrodifferential equations. The continuous dependence of solutions on a parameter is investigated as well.
متن کاملAn effective method for eigen-problem solution of fluid-structure systems
Efficient mode shape extraction of fluid-structure systems is of particular interest in engineering. An efficient modified version of unsymmetric Lanczos method is proposed in this paper. The original unsymmetric Lanczos method was applied to general form of unsymmetric matrices, while the proposed method is developed particularly for the fluid-structure matrices. The method provides us with si...
متن کاملPerturbation of an Eigen-value from a Dense Point Spectrum: a General Floquet Hamiltonian
We consider a perturbed Floquet Hamiltonian −i∂t + H + βV (ωt) in the Hilbert space L([0, T ],H, dt). Here H is a self-adjoint operator in H with a discrete spectrum obeying a growing gap condition, V (t) is a symmetric bounded operator in H depending on t 2π-periodically, ω = 2π/T is a frequency and β is a coupling constant. The spectrum Spec(−i∂t + H) of the unperturbed part is pure point and...
متن کاملEigen-value Monotonicity for the Ricci-hamilton Flow
∂tgij = −2Rij , on MT := M × [0, T ) where Rij is the Ricci tensor of the metric g := g(t) and T is the maximal existing time for the flow. In [2], R.Hamilton proved the local existence of the flow for the compact manifold case. His argument is much simplified by De Turck [1]. When (M,g0) is a a complete non-compact Riemannian manifold with bounded geometry, W.X.Shi [5] obtained the local exist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1960
ISSN: 0386-5991
DOI: 10.2996/kmj/1138844240