FREE ACTION OF FINITE GROUPS ON SPACES OF COHOMOLOGY TYPE (0, b)

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cohomology of Finite Groups of Lie Type

Let IFq denote the finite field with q elements and let G = XIFq be a connected (not necessarily split) reductive group scheme over spec(IFq) . We will be interested in the cohomology of the finite groups G(IFqn) of IFqn–rational points of G , with coefficients in ZZ/` where ` is a prime different from p = char(IFq) . These groups are closely related and present special cases of the groups refe...

متن کامل

Cohomology algebra of the orbit space of some free actions on spaces of cohomology type ( a , b )

Let X be a finitistic space with non-trivial cohomology groups H (X;Z) ∼= Z with generators vi , where i = 0, 1, 2, 3. We say that X has cohomology type (a, b) if v 1 = av2 and v1v2 = bv3 . In this note, we determine the mod 2 cohomology ring of the orbit space X/G of a free action of G = Z2 on X , where both a and b are even. In this case, we observed that there is no equivariant map S → X for...

متن کامل

PICTURE GROUPS OF FINITE TYPE AND COHOMOLOGY IN TYPE An

For every quiver of finite type we define a finitely presented group called a picture group. We construct a finite CW complex which is shown in another paper [10] to be a K(π, 1) for this picture group. In [5] another independent proof was given for this fact in the special case of type An with straight orientation and we use this CW complex to compute the integral cohomology of picture groups ...

متن کامل

Unramified Cohomology of Finite Groups of Lie Type

— We prove vanishing results for unramified stable cohomology of finite groups of Lie type.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2018

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089517000362