Free compact 2-categories
نویسندگان
چکیده
منابع مشابه
Free compact 2-categories
Before one can attach a meaning to a sentence, one must distinguish different ways of parsing it. When analyzing a language with pregroup grammars, we are thus led to replace the free pregroup by a free compact strict monoidal category. Since a strict monoidal category is a 2-category with one 0-cell, we investigate the free compact 2-category generated by a given category, and we describe its ...
متن کاملCategories of Components and Loop-free Categories
Given a groupoid G one has, in addition to the equivalence of categories E from G to its skeleton, a fibration F (Definition 1.11) from G to its set of connected components (seen as a discrete category). From the observation that E and F differ unless G[x, x] = {idx} for every object x of G, we prove there is a fibered equivalence (Definition 1.12) from C[Σ-1] (Proposition 1.1) to C/Σ (Proposit...
متن کاملAbstract Scalars, Loops, and Free Traced and Strongly Compact Closed Categories
We study structures which have arisen in recent work by the present author and Bob Coecke on a categorical axiomatics for Quantum Mechanics; in particular, the notion of strongly compact closed category. We explain how these structures support a notion of scalar which allows quantitative aspects of physical theory to be expressed, and how the notion of strong compact closure emerges as a signif...
متن کاملObject-Free Definition of Categories
Category theory was formalized in Mizar with two different approaches [7], [18] that correspond to those most commonly used [16], [5]. Since there is a one-to-one correspondence between objects and identity morphisms, some authors have used an approach that does not refer to objects as elements of the theory, and are usually indicated as object-free category [1] or as arrowsonly category [16]. ...
متن کاملRewriting in Free Hypegraph Categories
We study rewriting for equational theories in the context of symmetric monoidal categories where there is a separable Frobenius monoid on each object. These categories, also called hypergraph categories, are increasingly relevant: Frobenius structures recently appeared in cross-disciplinary applications, including the study of quantum processes, dynamical systems and natural language processing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Structures in Computer Science
سال: 2007
ISSN: 0960-1295,1469-8072
DOI: 10.1017/s0960129506005901