Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions
نویسندگان
چکیده
منابع مشابه
Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions.
We propose an interferometric scheme based on an untrapped nano-object subjected to gravity. The motion of the center of mass (c.m.) of the free object is coupled to its internal spin system magnetically, and a free flight scheme is developed based on coherent spin control. The wave packet of the test object, under a spin-dependent force, may then be delocalized to a macroscopic scale. A gravit...
متن کاملTowards the Quantum Noise Limit in Ramsey-Bordé Atom Interferometry
In this work, the relevant noise sources in atom interferometers of Ramsey-Bordé type were investigated, which are the noise of the excitation induced by the interrogation and the noise of the detection of the excitation. In the first part of the work, the methods for the considerable reduction of the frequency noise of the interrogation laser in the low and in the high frequency range are desc...
متن کاملLarge quantum superpositions and interference of massive nanometer-sized objects.
We propose a method to prepare and verify spatial quantum superpositions of a nanometer-sized object separated by distances of the order of its size. This method provides unprecedented bounds for objective collapse models of the wave function by merging techniques and insights from cavity quantum optomechanics and matter-wave interferometry. An analysis and simulation of the experiment is perfo...
متن کاملRamsey Interferometry with Quantized Fields
Implications of field quantization on Ramsey interferometry are discussed and general conditions for the occurrence of interference are obtained. Interferences do not occur if the fields in two Ramsey zones have precise number of photons. However in this case we show how two atom (like two photon) interferometry can be used to discern a variety of interference effects as the two independent Ram...
متن کاملTyping Quantum Superpositions and Measurement
We study a purely functional quantum extension of lambda calculus, that is, an extension of lambda calculus to express some quantum features, where the quantum memory is abstracted out. This calculus is a typed extension of the first-order linear-algebraic lambda-calculus. The type is linear on superpositions, so to forbid from cloning them, while allows to clone basis vectors. We provide examp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2016
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.117.143003