Frobenius reciprocity and extensions of nilpotent Lie groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius Recip-rocity and Extensions of Nilpotent Lie Groups

In §1 we use COO-vector methods, essentially Frobenius reciprocity, to derive the Howe-Richardson multiplicity formula for compact nilmanifolds. In §2 we use Frobenius reciprocity to generalize and considerably simplify a reduction procedure developed by Howe for solvable groups to general extensions of nilpotent Lie groups. In §3 we give an application of the previous results to obtain a reduc...

متن کامل

Curvature in Nilpotent Lie Groups

Colloq. Algebraic Topology, 1962, pp. 104-113, Matematisk Institut, Aarhus Universitet, Denmark. 4. M. F. Atiyah, Thorn complexes, Proc. London Math. Soc. (3) 11 (1961), 291310. 5. M. F. Atiyah and J. A. Todd, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 56 (1960), 342-353. 6. Sze-Tsen Hu, Homotopy theory, Pure and Applied Mathematics VIII, Academic Press, New York and London, 195...

متن کامل

Approximate Multiplicative Groups in Nilpotent Lie Groups

We generalize a result of Tao which describes approximate multiplicative groups in the Heisenberg group. We extend it to simply connected nilpotent Lie groups of arbitrary step.

متن کامل

Unitary Representations of Nilpotent Super Lie Groups

We prove that irreducible unitary representations of nilpotent super Lie groups can be obtained by induction from a distinguished class of sub super Lie groups which are natural generalizations of polarizing subgroups that appear in classical Kirillov theory. We prove that this kind of induction always yields irreducible unitary representations. We also prove a uniqueness result for the inducin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1986

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1986-0857436-1