Fully discrete Galerkin methods for systems of boundary integral equations
نویسندگان
چکیده
منابع مشابه
The Discrete Galerkin Method for Integral Equations
A general theory is given for discretized versions of the Galerkin method for solving Fredholm integral equations of the second kind. The discretized Galerkin method is obtained from using numerical integration to evaluate the integrals occurring in the Galerkin method. The theoretical framework that is given parallels that of the regular Galerkin method, including the error analysis of the sup...
متن کاملGalerkin Methods for Singular Integral Equations
The approximate solution of a singular integral equation by Galerkin's method is studied. We discuss the theoretical aspects of such problems and give error bounds for the approximate solution.
متن کاملGalerkin Methods for Second Kind Integral Equations
This paper discusses the numerical solution of Fredholm integral equations of the second kind which have weakly singular kernels and inhomogeneous terms. Global convergence estimates are derived for the Galerkin and iterated Galerkin methods using splines on arbitrary quasiuniform meshes as approximating subspaces. It is observed that, due to the singularities present in the solution being appr...
متن کاملWavelet Galerkin Schemes for Boundary Integral Equations-Implementation and Quadrature
In the present paper we consider the fully discrete wavelet Galerkin scheme for the fast solution of boundary integral equations in three dimensions. It produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that stays proportional to the number of unknowns. We focus on algorithmical details of the scheme, in part...
متن کاملThe Discrete Galerkin Method for Nonlinear Integral Equations
Let K be a completely continuous nonlinear integral operator, and consider solving x = K(x) by Galerkin's method. This can be written as xn = PnK(xn),Pn an orthogonal projection; the iterated Galerkin solution is defined by xn = K(xn). We give a general framework and error analysis for the numerical method that results from replacing all integrals in Galerkin's method with numerical integrals. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1997
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(97)00069-1