Fully nonlinear equations on Riemannian manifolds with negative curvature

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Estimates for Fully Nonlinear Parabolic Equations on Riemannian Manifolds

In this paper we present some new ideas to derive a priori second order estiamtes for a wide class of fully nonlinear parabolic equations. Our methods, which produce new existence results for the initial-boundary value problems in R n , are powerful enough to work in general Riemannian manifolds. Mathematical Subject Classification (2010): 35K10, 35K55, 58J35, 35B45.

متن کامل

Instability of Elliptic Equations on Compact Riemannian Manifolds with Non-negative Ricci Curvature

We prove the nonexistence of nonconstant local minimizers for a class of functionals, which typically appear in scalar two-phase field models, over smooth N -dimensional Riemannian manifolds without boundary and nonnegative Ricci curvature. Conversely, for a class of surfaces possessing a simple closed geodesic along which the Gauss curvature is negative, we prove the existence of nonconstant l...

متن کامل

Examples of Riemannian Manifolds with Non-negative Sectional Curvature

Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S × S, also fit into this subject. For non-negatively curved manifolds, there are a number of obs...

متن کامل

Second Order Estimates and Regularity for Fully Nonlinear Elliptic Equations on Riemannian Manifolds

We derive a priori second order estimates for solutions of a class of fully nonlinear elliptic equations on Riemannian manifolds under structure conditions which are close to optimal. We treat both equations on closed manifolds, and the Dirichlet problem on manifolds with boundary without any geometric restrictions to the boundary. These estimates yield regularity and existence results some of ...

متن کامل

The Dirichlet Problem for Fully Nonlinear Elliptic Equations on Riemannian Manifolds

We study a class of fully nonlinear elliptic equations on Riemannian manifolds and solve the Dirichlet problem in a domain with no geometric restrictions to the boundary under essentially optimal structure conditions. It includes a new (and optimal) result in the Euclidean case (see Theorem 1.1). We introduce some new methods in deriving a priori C estimates, which can be used to treat other ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2003

ISSN: 0022-2518

DOI: 10.1512/iumj.2003.52.2313