Further Geometric and Lyapunov Characterizations of Incrementally Stable Systems on Finsler Manifolds

نویسندگان

چکیده

In this article, we report several new geometric and Lyapunov characterizations of incrementally stable systems on Finsler Riemannian manifolds. A intrinsic proof an important theorem in contraction analysis is given via the complete lift system. Based this, two are derived, namely, converse theorems, revelation connection between incremental stability equilibrium point, which second result recovers extends classical Krasovskii’s method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

A Geometric Characterization of Finsler Manifolds of Constant Curvature

We prove that a Finsler manifold Fm is of constant curvature K = 1 if and only if the unit horizontal Liouville vector field is a Killing vector field on the indicatrix bundle IM of Fm.

متن کامل

Further Results on Lyapunov Functions and Domains of Attraction for Perturbed Asymptotically Stable Systems

We present new theorems characterizing robust Lyapunov functions and infinite horizon value functions in optimal control as unique viscosity solutions of partial differential equations. We use these results to further extend Zubov’s method for representing domains of attraction in terms of partial differential equation solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2022

ISSN: ['0018-9286', '1558-2523', '2334-3303']

DOI: https://doi.org/10.1109/tac.2021.3122377