Fused inverse regression with multi-dimensional responses
نویسندگان
چکیده
منابع مشابه
On Sliced Inverse Regression With High-Dimensional Covariates
Sliced inverse regression is a promising method for the estimation of the central dimension-reduction subspace (CDR space) in semiparametric regression models. It is particularly useful in tackling cases with high-dimensional covariates. In this article we study the asymptotic behavior of the estimate of the CDR space with high-dimensional covariates, that is, when the dimension of the covariat...
متن کاملFused Regression for Multi-source Gene Regulatory Network Inference
Understanding gene regulatory networks is critical to understanding cellular differentiation and response to external stimuli. Methods for global network inference have been developed and applied to a variety of species. Most approaches consider the problem of network inference independently in each species, despite evidence that gene regulation can be conserved even in distantly related specie...
متن کاملRelative Transfer Function Inverse Regression from Low Dimensional Manifold
In room acoustic environments, the Relative Transfer Functions (RTFs) are controlled by few underlying modes of variability. Accordingly, they are confined to a low-dimensional manifold. In this letter, we investigate a RTF inverse regression problem, the task of which is to generate the high-dimensional responses from their low-dimensional representations. The problem is addressed from a pure ...
متن کاملMulti-dimensional Function Approximation and Regression Estimation
In this communication, we generalize the Support Vector Machines (SVM) for regression estimation and function approximation to multi-dimensional problems. We propose a multi-dimensional Support Vector Regressor (MSVR) that uses a cost function with a hyperspherical insensitive zone, capable of obtaining better predictions than using an SVM independently for each dimension. The resolution of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2021
ISSN: ['2287-7843', '2383-4757']
DOI: https://doi.org/10.29220/csam.2021.28.3.267