Fuzzy entropy image segmentation based on particle swarm optimization
نویسندگان
چکیده
منابع مشابه
Fuzzy Entropy Based MR Image Segmentation Using Particle Swarm Optimization
An image segmentation technique based on fuzzy entropy is applied for MR brain images to detect a brain tumor is presented in this paper. The proposed method performs image segmentation based on adaptive thresholding of the input MR images. The image is classified into two membership functions, whose member functions of the fuzzy region are Z-function and S-function. The optimal parameters of t...
متن کاملFuzzy Clustering Image Segmentation Based on Particle Swarm Optimization
Image segmentation refers to the technology to segment the image into different regions with different characteristics and to extract useful objectives, and it is a key step from image processing to image analysis. Based on the comprehensive study of image segmentation technology, this paper analyzes the advantages and disadvantages of the existing fuzzy clustering algorithms; integrates the pa...
متن کاملA new image segmentation method based on particle swarm optimization
In this paper, a new segmentation method for images based on particle swarm optimization (PSO) is proposed. The new method is produced through combining PSO algorithm with one of region-based image segmentation methods, which is named Seeded Region Growing (SRG).The algorithm of SRG method performs a segmentation of an image with respect to a set of points known as seeds. Two problems are relat...
متن کاملMaximum Entropy for Image Segmentation based on an Adaptive Particle Swarm Optimization
Image segmentation is applied widely to image processing and object recognition. Threshold segmentation is a simple and important method in grayscale image segmentation. Information entropy can characterize the grayscale in formation of image and distinguish between the objectives and background. In this paper, we use exponential entropy instead of logarithmic entropy and propose a new multilev...
متن کاملInfrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO)
The 2-D maximum entropy method not only considers the distribution of the gray information, but also takes advantage of the spatial neighbor information with using the 2-D histogram of the image. As a global threshold method, it often gets ideal segmentation results even when the image s signal noise ratio (SNR) is low. However, its time-consuming computation is often an obstacle in real time a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress in Natural Science
سال: 2008
ISSN: 1002-0071
DOI: 10.1016/j.pnsc.2008.03.020