Fuzzy Repertory Table: A Method for Acquiring Knowledge About Input Variables to Machine Learning Algorithm
نویسندگان
چکیده
منابع مشابه
Machine-learning paradigms for selecting ecologically significant input variables
Harmful algal blooms, which are considered a serious environmental problem nowadays, occur in coastal waters in many parts of the world. They cause acute ecological damage and ensuing economic losses, due to fish kills and shellfish poisoning as well as public health threats posed by toxic blooms. Recently, data-driven models including machine learning (ML) techniques have been employed to mimi...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملTransparent Machine Learning Algorithm Offers Useful Prediction Method for Natural Gas Density
Machine-learning algorithms aid predictions for complex systems with multiple influencing variables. However, many neural-network related algorithms behave as black boxes in terms of revealing how the prediction of each data record is performed. This drawback limits their ability to provide detailed insights concerning the workings of the underlying system, or to relate predictions to specific ...
متن کاملSelecting Input Variables for Fuzzy Models
We present an efficient method for selecting important input variables when building a fuzzy model from data. Past methods for input variable selection require generating different models while searching for the optimal combination of variables; our method requires generating only one model that employs all possible input variables. To determine the important variables, premises in the fuzzy ru...
متن کاملFGP: A Virtual Machine for Acquiring Knowledge from Cases
Large case databases are numerous and packed with information. The largest of them are potentially rich sources of domain knowledge. The FGP machine is a software architecture that can make this knowledge explicit and bring it to bear on classification and prediction problems. The architecture provides much of the functionality of traditional expert systems without requiring the system builder ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Fuzzy Systems
سال: 2004
ISSN: 1063-6706
DOI: 10.1109/tfuzz.2003.822684