Gaussian Dynamic Convolution for Efficient Single-Image Segmentation
نویسندگان
چکیده
Interactive single-image segmentation is ubiquitous in the scientific and commercial imaging software. Lightweight neural network one practical effective way to accomplish task. This work focuses on problem only with some seeds such as scribbles. Inspired by dynamic receptive field human being’s visual system, we propose Gaussian convolution (GDC) fast efficiently aggregate contextual information for networks. The core idea randomly selecting spatial sampling area according distribution offsets. Our GDC can be easily used a module build lightweight or complex We adopt proposed address typical tasks. Furthermore, also pyramid Pooling show its potential generality common semantic segmentation. Experiments demonstrate that outperforms other existing convolutions three benchmark datasets including Pascal-Context, Pascal-VOC 2012, Cityscapes. Additional experiments are conducted illustrate produce richer more vivid features compared convolutions. In general, our conducive convolutional networks form an overall impression of image.
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملRethinking Atrous Convolution for Semantic Image Segmentation
In this work, we revisit atrous convolution, a powerful tool to explicitly adjust filter’s field-of-view as well as control the resolution of feature responses computed by Deep Convolutional Neural Networks, in the application of semantic image segmentation. To handle the problem of segmenting objects at multiple scales, we design modules which employ atrous convolution in cascade or in paralle...
متن کاملGaussian Synapse Networks for Hyperspectral Image Segmentation
In this work we have made use of a new type of network with non linear synapses, Gaussian Synapse Networks, for the segmentation of hyperspectral images. These structures were trained using the GSBP algorithm and present two main advantages with respect to other, more traditional, approaches. On one hand, through the intrinsic filtering ability of the synapses, they permit concentrating on what...
متن کاملEncoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2022
ISSN: ['1051-8215', '1558-2205']
DOI: https://doi.org/10.1109/tcsvt.2021.3096814