Gaussian process as complement to test functions for surrogate modeling
نویسندگان
چکیده
منابع مشابه
Adaptive Generation-Based Evolution Control for Gaussian Process Surrogate Models
Added credits to the s∗ACM-ES algorithm. Section 1 Added references and clarified the motivation. Section 3 Added references. Abstract: The interest in accelerating black-box optimizers has resulted in several surrogate model-assisted version of the Covariance Matrix Adaptation Evolution Strategy, a state-of-the-art continuous black-box optimizer. The version called Surrogate CMA-ES uses Gaussi...
متن کاملNonstationary Covariance Functions for Gaussian Process Regression
We introduce a class of nonstationary covariance functions for Gaussian process (GP) regression. Nonstationary covariance functions allow the model to adapt to functions whose smoothness varies with the inputs. The class includes a nonstationary version of the Matérn stationary covariance, in which the differentiability of the regression function is controlled by a parameter, freeing one from f...
متن کاملAdditive Kernels for Gaussian Process Modeling
Gaussian Process (GP) models are often used as mathematical approximations of computationally expensive experiments. Provided that its kernel is suitably chosen and that enough data is available to obtain a reasonable fit of the simulator, a GP model can beneficially be used for tasks such as prediction, optimization, or Monte-Carlo-based quantification of uncertainty. However, the former condi...
متن کاملDetermining Convergence in Gaussian Process Surrogate Model Optimization
Identifying convergence in numerical optimization is an ever-present, difficult, and often subjective task. The statistical framework of Gaussian process surrogate model optimization provides useful measures for tracking optimization progress; however, the identification of convergence via these criteria has often provided only limited success and often requires a more subjective analysis. Here...
متن کاملGPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation
Scientists often express their understanding of the world through a computationally demanding simulation program. Analyzing the posterior distribution of the parameters given observations (the inverse problem) can be extremely challenging. The Approximate Bayesian Computation (ABC) framework is the standard statistical tool to handle these likelihood free problems, but they require a very large...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structural and Multidisciplinary Optimization
سال: 2020
ISSN: 1615-147X,1615-1488
DOI: 10.1007/s00158-019-02441-1