Gaussian Variational State Estimation for Nonlinear State-Space Models
نویسندگان
چکیده
In this paper, the problem of state estimation, in context both filtering and smoothing, for nonlinear state-space models is considered. Due to nature models, estimation generally intractable as it involves integrals general functions filtered smoothed distributions lack closed-form solutions. As such, common approximate problem. we develop an assumed Gaussian solution based on variational inference, which offers key advantage a flexible, but principled, mechanism approximating required distributions. Our main contribution lies new formulation optimisation problem, can then be solved using standard routines that employ exact first- second-order derivatives. The resulting approach minimal number assumptions applies directly systems with non-Gaussian probabilistic models. performance our demonstrated several examples; challenging scalar system, model simple robotic target tracking von Mises-Fisher distribution outperforms alternative approaches estimation.
منابع مشابه
Variational Gaussian Process State-Space Models
State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer th...
متن کاملState Inference in Variational Bayesian Nonlinear State-Space Models
Nonlinear source separation can be performed by inferring the state of a nonlinear state-space model. We study and improve the inference algorithm in the variational Bayesian blind source separation model introduced by Valpola and Karhunen in 2002. As comparison methods we use extensions of the Kalman filter that are widely used inference methods in tracking and control theory. The results in s...
متن کاملUnified Inference for Variational Bayesian Linear Gaussian State-Space Models
Linear Gaussian State-Space Models are widely used and a Bayesian treatment of parameters is therefore of considerable interest. The approximate Variational Bayesian method applied to these models is an attractive approach, used successfully in applications ranging from acoustics to bioinformatics. The most challenging aspect of implementing the method is in performing inference on the hidden s...
متن کاملVariational Bayes for Continuous-Time Nonlinear State-Space Models
We present an extension of the variational Bayesian nonlinear state-space model introduced by Valpola and Karhunen in 2002 [1] for continuous-time models. The model is based on using multilayer perceptron (MLP) networks to model the nonlinearities. Moving to continuous-time requires solving a stochastic differential equation (SDE) to evaluate the predictive distribution of the states, but other...
متن کاملOn-line ltering for nonlinear/ non-Gaussian state space models
The bootstrap lter is an algorithm for implementing recursive Bayesian lters. The required density of the state vector is represented as a set of random samples, which are updated and propagated by the algorithm. The method is not restricted by assumptions of linearity or Gaussian noise. In situations where there is low overlap between prior and posterior, the standard bootstrap lter may not wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2021
ISSN: ['1053-587X', '1941-0476']
DOI: https://doi.org/10.1109/tsp.2021.3122296