Gene Selection for Cancer Classification using Microarrays

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Selection for Cancer Classification using Microarrays

Microarrays allow biologists to better understand the interactions between diverse pathologic states at the gene level. However, the amount of data generated by these tools becomes problematic. New techniques are then needed in order to extract valuable information about gene activity in sensitive processes like tumor cells proliferation and metastasis activity. Recent tools that analyze microa...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

Improved Gene Selection for Classification of Microarrays

In this paper we derive a method for evaluating and improving techniques for selecting informative genes from microarray data. Genes of interest are typically selected by ranking genes according to a test-statistic and then choosing the top k genes. A problem with this approach is that many of these genes are highly correlated. For classification purposes it would be ideal to have distinct but ...

متن کامل

sfla based gene selection approach for improving cancer classification accuracy

in this paper, we propose a new gene selection algorithm based on shuffled frog leaping algorithm that is called sfla-fs. the proposed algorithm is used for improving cancer classification accuracy. most of the biological datasets such as cancer datasets have a large number of genes and few samples. however, most of these genes are not usable in some tasks for example in cancer classification. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Applications Technology and Research

سال: 2013

ISSN: 2319-8656

DOI: 10.7753/ijcatr0205.1016